indexes selection, blocks of related SQL queri@, S

Radostaw BOR®SKI”

INDEXES SELECTION FOR BLOCKS
OF RELATED SQL QUERIES

Abstract

This paper discusses the problem of minimizing résponse time for
a given database workload by a proper choice ofexas$. The main
objective of our contribution is to illustrate théatabase queries as
a group and search for good indexes for the grawgteiad of an individual
query. We present queries block relation conditidos applying the

concept of grouped queries index selection. Ingheeperimental tests we
provide measurements on the quality of the recordetkapproach.

1. INTRODUCTION

Getting database search result quickly is one ef dhucial optimization
problems in a relational database processing. Ta@rnstrength of relational
systems is their ease of use. Users interact Wwihet systems in a natural way
using nonprocedural languages that specify what deg¢ required, but do not
specify how to perform the operations to obtainsthdata [8]. Online Internet
shops, analytics data processing or catalogue l's@aecexamples of structures
where data search must be processed as quick ablposvith minimal
hardware resources involved. Common practice isnioimize the database
search process at minimal cost. A database admaitust(or a user) may
redesign the physical hardware structure or résetidtabase engine parameters,
or try to find suitable table indexes for a currgoery. Most vendors nowadays
offer automated tools to adjust the physical desiga database as part of their
products to reduce the DBMS's total cost of ownigrdB]. As adding more
CPUs or memory may not always be possible (i.eitditn budget) and
maneuvering within hundreds of database parame#gr lead to a temporary
solution (wrong settings for other database qugriagex optimization should
be considered as being foremost.

Indexes are optional data structures built on tabledexes can improve data
retrieval performance by providing a direct acamsthod instead of the default

Y Koszalin University of Technology, ulSniadeckich 2, 75-453 Koszalin, Poland, e-mail:
radoslaw.boronski@ie.tu.koszalin.pl

3

full table scan retrieval method [7]. In the simplase, each query can be
answered either without using any index, in a gigeswer time or with using
one built index, reducing answer time by a gaircsjgel for every index usable
for a query [14]. Hundreds of consecutive dataltpseries together with large
amount of data involved lead to a very complex coaorial optimization
problem. Time needed to obtain result of both inld=s tables joined together
may be up to 45 minutes. Such delays are not aauleptfor production
environment processes. Indexes in such cases rdagad¢he response time of
50% (depending on which columns are used for tdeximg). The classic index
selection method focuses on a tree data struotdrieh could limit the search
area as much as possible. Literature acknowledg@gth such B-tree types as:
(Known in the literature are those of the type ef&e such as)

e Sorted counted B-trees, with the ability to loaknils up either by key or
by number, could be useful in database-like algor# for query
planning [5],

» Balanced B*-tree that balances more neighboringrival nodes to keep
the internal nodes more densely packed [12],

* Counted B-trees with each pointer within the treel ghe number of
nodes in the subtree below that pointer [19].

The B-tree and its variants have been widely usegkéent years as a data
structure for storing large files of informatiorspecially on secondary storage
devices [11]. The guaranteed small (average) searstrtion, and deletion time
for these structures makes them quite appealingdtabase applications.

The topic of current interest in database desigrthis construction of
databases that can be manipulated concurrently camcectly by several
processes. In this paper, we discuss a simplentasfahe B-tree (balanced B*-
tree, proposed by Wedekind [20] especially weitezifor use in a concurrent
database system [15].

While the selection of indexes structure have g wmportant role in the
design of database applications, one should pienindexes structure and
number of indexes at the early stage of databassaj@ament operation. In such
situations more important is to ask a question “owhoose a set of indexes for
the selected query sets?”. It turns out that thopgar selection of indexes can
bring significant benefits for the database querecetion time. Typical
approaches found in the literature mainly focusttue search indexes only for
single column or single query [16], [10], [9], [1T4]. In this paper, an approach
associated with the search query indexes for groalbsd blocks is presented.

In this case we will consider B-tree indexes. Ar&etindex allows fast
access to the records of a table whose attribatiesfys some equality or range
conditions, and also enables sorted scans of therlying table [18]. Also, we
focus on databases with the same SQL queries szbeatiodically. By doing

so, we eliminate database queries’ low selectifé@tyor where no good indexes
could be found due to changing queries sets.

The rest of the paper is organized as follows: éntisn 2, we describe
a problem statement. In section 3, we briefly pnesgassic index selection
approach together with simple examples that wilktrate the subject. In section
4, we demonstrate new method of grouped queriesxisdlection and compare
examples results with classic approach. Test antpadsons with commercial
tools results are presented in section 5. Sectipre§ents our conclusions and
further works.

2. PROBLEM STATEMENT

Motivation for this work is to suggest an approadhmulti-queried SQL
block where sub-optimal or optimal solution is ® found that gives decision
makers some leeway in their decisions. The mair igo@ choose a subset of
given indexes to be created in a database, sdhbatsponse time for a given
database workload together with indexes used toegsoqueries are minimal.

The index selection problem has been discussethanliterature. Several
standard approaches have been formulated for thienalpsingle-query and
multi-query index selection. Some past studies luexe=loped rudimentary on-
line tools for index selection in relational datags, but the idea has received
little attention until recently. In the past yeam-line tuning came into the
spotlight and more refined solution was proposelthcddigh these techniques
provide interesting insights into the problem ofeséng indexes on-line, they
are not robust enough to be deployed in a reaksy$i8]. The problem is
known in a literature as Index Selection Proble&P)l According to [8] it is NP-
hard. Note that in practice the space limit in E8E is soft, because databases
usually grow, thus the space limit is specifiedsuch way that a significant
amount of storage space remains free [13].

In a real life scenario, for thousands databaseiegiérig. 1) compromising
hundreds of tables and thousands of columns, theclsespace is huge and
grows exponentially with the size of the input wodd.

Considered case of Index Selection Problem carefieadl in following way.
Given is a set of tables:

T ={Ty,..,T;, ..., Tp}, (1)
described by a set of columns included in the t&able
K = {ky1, e kagcay o Ko oo K oo Ky} 2)

where:k; ; is aj-th column of tabld;.

Each columnk; ; corresponds to set of valué’iki,j) (tuples set) included in
this column.

H- & T T M

SELECT COUNT | DAY/MONTH |
2674 | 25/02
2566 | 01/03
2560 | 02/03
2374 | 28/02
2342 | 04/03
2234 | 03/03
1827 | 25/02
1814 26/02
1744 1 27/02
10 1716 | 0503
1 1679 01/06
12 1663 | 15/06
13 1658 | 27/07
14 1658 | 09/05

»

0| 03| =] | LN | 4| LI R | =

Fig. 1. Example of number of database queries ingiven day for a production data
warehouse

For the set of tableB various querie®; can be formulated (in SQL these are
SELECT queries). These queries are put againssyeeified set of columns
K; € K. The result of querg; is set as:

A; gﬂ V(ky), (3)

ki j€K;

where: [T, Y; =Y, XY, X ... X Y, is a cartesian product of séfs..., Y,,.
For a given databagd®B it is taken into account that is a result of following
function:

A; = Qi(K;,0p(DB)) , 4)

where:K;" is a subset of used columri®y (DB) is set of operators available in
databas®B of which relation describing queg is built.

The time associated with the determination of #teds is depended on the
DB database used (search algorithms, indexes stegftand adopted set of
indexeg € P(K*) (whereP(K™) - is a power set df;"). It is therefore assumed
that the query execution tim@; in given databas®B, is determined by the
function: t(Q;,/, DB). In short the value of execution time for quély data
baseDB and set of indexglswill be define ast;()).

6

In the context of the so-defined parameters, acffgiroblem associated with
the ISP responds to the question:

What set of indexeg € P(K;") minimizes the query); execution time:
t;(J) > min?

When a multi-component set of quer@gs= {Q,, ..., Q,,} is considered, question
takes the form:

What set of indexgsc P(K*) minimizes the queries block Q execution time:
ZQL.EQ t;(J) > min ?

3. CLASSIC INDEX SELECTION APPROACH

Classic index selection approach focuses on indaliquery and tries to find
good index or indexes set for tables in a singlergiin a given block. Such
approach does not take into consideration queries block as a whole. By
doing so, a database user may expose databasedt® @xcess number of
indexes which could be redundant or not used forentban one query in an
examined block. This could also result in utilizitmgp much disk space and time
needed for the indexes creation. Finding good irglexip for a large database
gueries’ block was never an easy task to do andllysusers and database
administrators rely on their experience and goetie. In the commercial use
one may find tools that support the index selectimtess, such as SQL Access
Advisor (Fig. 2) [6], Toad, SQL Server Database imgrAdvisor [1].

Let us consider three examples where given is apgd three database

queries) = {Q4, @2, 03}

Q.: SELECT * FROM;, T, WHEREk, ; < k,, ANDk; ;=[const],
Q,: SELECT * FROM,, T; WHEREK, , = k3 5,
Qs: SELECT * FROM', WHEREK, ; > [const].

Interpretation of this type of queries (accordiod4)) is as following:

Q,: searching for a set of tripled; = {(a,b,c):a € V(ky1),b € V(ky3),c €
V(k1,3); a < b,c = [const]},
setKy = {kq,1, ka2, k13}-

Q,: searching for a set of paiw; = {(a,b): a € V(ky3),b € V(ks;);a = b},
SetK; = {kz’z, k3'2}.

Q3: searching for a sett; = {a:a € V(ky,); a = [const]},
SetK; - {kz,l}'

TablesT,, T,, T; contain 1*16 records each. No indexes are built on either
table:J = @. With the first test run, database returned foifmmesponse times:
t1(J) = 2040s,t,(J) = 3611s,t,(J) = 345s respectively, resulting in full table
scans for eacly. QueriesQ ran on database Oracle 11.2.0.1 installed on serve
with Redhat 6 operating system with 64GB memory &M used for disk
storage.

The classic approach requires treating every datalmuery individually.
Hence indexes are buikt; ; andk, ; on tableTy; k, 1, k,, on tableT,; k3, on
table T;. This kind of indexes are represented by the

set:]={{klll,k1,3},{kz,z},{k3,2},{k2,1}} containing four sets. Each element

(set) of] contains the columns which are used to build tidexes. For example,
the sef{k, 1, k1 3} means that we have to build one index for coluknsk; ;.

ORACLE Enterprise Manager 10g
Grid Cantrol GOUERY Targets

Databases | Hosts | Application Servers | Web Applications | Services | Systems | Groups | All Targets | Siebel
Database Instance: gmird > Advisor Central > Results for Task SOLACCESS3512928 »
Recommendation: 1

SOL Access Advisor generates default object names and uses the default schemas and tablespaces specified during task creation, but you can change them. f you edit any name. depandent names. which are shown
accordingly. If the Tablespacs field is left blank the default tablespace of the schema will be used. When you click Apply or OK_ the SQL script is modified, but it is not actually executed until you select ‘Schedule Imple:
SQL Statements pages.

Actions
Implementatiuni [iObis:l [I ‘
| Status |Action |Object Name Attributes Indexed Columns Base Table |Schema

™ CREATE_INDEX |STEPS_|DX$5_1978A000D | BTREE SUBMISSION_ID, JOB_ID, STATUS_CD. ANIMATE_IRSTEST1.STEPS AMIMATE_IRSTEST1

STEP_ID 7

SQL Affected by Recommendation; 1
Slatemenl?
1D | Statement
184 update jabs | set status_cd = FAILED end_dt = sysdate where status_cd = RUNNING'and j node_id in (0) and exists (select s * fiom steps s where s job_id = } job_id and s submission_id =

J-submission_id and s.status_cd =FAILED)

updats jobs j set status_cd = COMPLETED' end_dt = sysdats whers status_cd = "RUNNING and nods_id in (0) and start_dt <= sysdats and not exists (sslect s.* flom steps s wher s job_id =
jiob_id and s submission_id = submission_id and s status_cd not

2 select step_id, command_line from steps where status_cd ='READY" and job_id = 101 and submission_id = 2701
50 select step_id. command_line from steps where status_cd = 'READY" and job_id = 101 and submission_id = 2702
n select step_id, command_line fiom steps where status_cd ='READY" and job_id = 101 and submission_id = 2722
123 select step id, command_line from steps where status_cd = 'READY" and job id = 101 and submission_id = 3850
124 select step_id. command_line from steps where status_cd = 'READY" and job_id = 101 and submission_id = 2714
102 select step_id, command_line from steps where status_cd = 'READY" and job_id = 101 and submission_id = 2715
88 select step_id. command_line from steps where status_cd ='READY" and job_id = 101 and submission_id = 2716
14 select step id, command _line from steps where status_cd ='READY" and job id = 101 and submission_id = 2713

Fig. 2. Oracle’s 10g2 SQL Access Advisor

The set of indexegis built for three different tables, resultinguse of 2GB
of additional disk space. With the second test database returned following
response timeg; (J) = 2612s, t,(J) = 2580s, t3(J) = 5s respectively. As the
response time is better by approximately 10%, therstill unreasonable disk
space used and time needed for creating 4 largex@sd Creating 4 indexes
forced query optimizer to use them, and insteadiecfeasing),; execution time,
it got increased. This is because optimizer decideckadk, ; column index

8

content first and because it couldn’t find values K, 3 column, it performed

full table scan for tabl&,. Examples shows that selected indexes may increase
the query execution performance where in othersas@y have the opposite
effect.

4. GROUPED QUERIES APPROACH

In this paper we focus on related queries grouplmewhuse of this relation
on the number of indexed columns. We take into actthe search for a good
index for the entire queries block. We propose & approach by using multi-
query SQL block selection. Such block consists lwbuelations between
gueries, meaning that the number of tables colunsesl in previous query is
present in other queries. The proposed approacll tsuan alternative to the
classic index selection method, where one commadexirset can be found.
Grouped queries approach has to be studied fefféstiveness and authenticity
via a series of numerical tests. Furthermore, topare the performance of the
method we use commercial tools to compare results.

For previous examples, we suggest to create agi@l columns taking part
in all queries in a group and build sub-optimalexes set for queried tables.
Such task involves creating the weighted list twit include all the index
candidate query-related columns and their numberocturrence in the
examined queries block:

KW = ((ky1,1), (ky3,1), (k21 1), (22, 2), (K2, 1)). (5)

Of course, onlyk,, column (marked by the box in (5)) is a query-redat
candidate column that could be used for the indeaton. Nevertheless, other
columns from remaining tables could also be revigethat context, we suggest
to create composite index for the same tdfleon columnsk,; and k,,:

] = {{kz,l,kz_z}}. By doing so, user not only speeds up block execuiut also

saves significant volume of disk space. With thedttest run, database returned
following response times:t;(J) = 1235s, t,(J) = 2430s, t3(J) =5s,
respectively, decreasing total execution time d%3&nd saving disk space of
60%. This is due to the fact that only index iscuse full table scan for non-
indexed table resulting in smaller response timms(f; and Q,. Database
optimizer does not need to perform an additionablreperation (separate for
index and if values not found and separate fobbe}aThis proves that indexes
should be selected with care.

Determining the answers to a set of queries caimipeoved by creating
some indexes.

Classic index selection focuses on each query iohagily and final indexes
set is a sum of indexes sub-sets for each query.

We show that groups of queries, one can get bietiexes set if such group
is treated as a whole.

Grouped queries index search can only benefit @we lan advantage over
single query search, only if queries in the groafps$y the condition of mutual
dependence. Querigd;, Q,, Q3, from previous examples are dependent so
below statement applies. Such dependency musebédycbefined.

In the present case, the dependence set of qu@ries determined by
connectivity of hypergrapfi(Q).

Example of a hypergraph for considered quegiés presented on Fig. 3.

In this type of graph vertices represent the cokimsed in querie@, edges
connect those vertices which combined make t@bldashed line hyper edge)
or related queries); (solid line hyper edge). For example, hyper edge
connecting verticek, ;, k, ,, k; 3 represents relation with quegy.

It is assumed that the query se@ is related if corresponding hypergraph
G(Q) is consistent.

In this context, the group queries indexes setticreaan benefit compared to
classic index selection only for related sets.

Fig. 3. Hypergraph for considered set of querie®

10

As a counterexample, given is a group of three bdsm queriesQ* =

{01, Q2,Q3}:

Q;: SELECT * FROM;, T, WHEREk, ; > ki ,,
Q3: SELECT * FROM,, T3 WHEREK, ; = k3,
Q3: SELECT * FROM, WHEREK, ; > [const].

Example of a hypergraph for considered que€léss presented on Fig. 4.
This kind of hypergraph presented is inconsistéat.this reason queri€s’ are
treated as the unrelated queries.

Unrelated queries for index selection process m#éanscannot be treated as
a group. In such cases best index set is a setndetal for each query
individually:

= {{k1,1; kl,z}; {k2,1}: {k3,2}: {k4,1}}- (6)

Weighted list forQ* that that includes all the index candidate columns

KW* = ((ky1,1), (ka2 1), (kg1 1), (3 2 1), (a1, 1)) ©

One can notice there are no query-related candatatenns (single column
occurrence) that could be used for the groupediepi@rdex set creation. Each
tableT; will have to be indexed separately for each irdiial queryQ™.

Fig. 4. Hypergraph for considered set of querie@*

11

5. EXPERIMENTAL TESTS

In the previous section we show two examples wignamuped queries
approach may be beneficial for SQL blocks with tedlaqueries, which is blocks
of queries that can be graphically represented bgresistent hypergraph (see
Fig. 3.).

In such context, a question needs to be asked: dums the efficiency of
obtained indexes (calculated as a response time goren query set) depend on
the degree of density of these types of hypergfaphs

In order to answer this question we carry out 3eeixpents that involve
index selection for 3 different queries blocks watieanging hypergraph density
degree.

Each of the analyzed query block3!, Q?, Q3 consists of three queries
which characterize relations between columns oédahdatabase table%:=
{Ty,T,, T3}, containingl0 x 10° rows each.

For experimental purposes we use Oracle databasson 10.2.0.3 installed
on server with Redhat 6 operating system with 64nory and ASM used for
disk storage.

Each of the queries blocks', Q2, Q3 are presented (using the SQL language
notation) in Tab. 1, Tab. 2, Tab. 3, respectively.

Database queries are constructed so that the porrédsd hypergraph
(presented in Fig. 5,6,7) has a varied densitig. dissumed that the densityof
a hypergraph describes common relations betweerieguef blockQ! and in
example of a block with 3 queries, density is dadis follows:

|(Ki1 n Ky 0 Ki3) U (K NKS) U (K nKis) U (K 0K
|K{f1 UK, U Kif3|

i

, Where: p; € [0,1] , p; = 0 — describes no relations between queries in
a block, and
p; = 1 describes presence of each column in each querpliock.

K; ;- is a subset of columns used in quegiy

Density of a hypergraph is calculated as a proportif number of common
columns to number of all columns used in the bloglkeries. Densities of
analyzed blocks from this experiment are as follows

+ blockQ?! (Tab. 1);p; =0

+ blockQ? (Tab. 2);p, = = = 0,57

» blockQ? (Tab. 3);p; = - = 0,91

12

The presented values should be interpreted as willodensity of

a hypergraph of queries bloag! is zero p, = 0) , meaning there are no
relations between queries (no relations). In twensity of a hypergraph of
queries blockQ? is 0,91, meaning relation between queries are very strong
(high relation — density is close to 1).
Each of the three experimental queries blocks eremed by three different
tests so that a good index group for each quermkhtfound:

1. index selection with use of advisory tools,

2. classic index selection approach,

3. grouped queries index selection approach

In the first test we use 2 different index selettamvisory tools. One is the
Oracle SQL Access Advisor, provided together witte tserver database
installation package. Another is TOAD package, ttgved by Quest company.
Oracle’s software has ability to search for indexetsonly for individual queries
but also for a queries block (SQL Tuning Set).

TOAD tool treats every SQL query within a group as individual and
indexes are selected individually, too.

For 2 other tests (classic and grouped queriesoappj we use our own
index selection adaptive algorithm.

The results for all 3 tests we carry out are shbelow:

Test 1: For queries blocks with recommendations of indebection advisory
tools, each block execution times are as follows:

- for blockQ?! - 12s
- for blockQ?- 267s
- for block @3- 368s.

Test 2: For queries blocks with recommendations of clagsiex selection
approach, each block execution times are as follows

- for block Q- 3s
- for blockQ?- 253s
- for block @3- 320s.

Test 3: For queries blocks with recommendations of groupadries index
selection approach, each block execution timessifellows:

- for blockQ*- 3s
- for blockQ? - 245s
- for block @3 - 289s.

13

Based on the above results, differences betweersagivtools, classic and
grouped queries approach for blocks execution tanesalculated as follows:

- Os for queries block with no relations (blagk).

- 8s (3%) for queries block with low relations (tkaQ?).

- 31s (9.5%) for queries block with high relatigbtock Q3).

The obtained results show that together with tleesimse in queries’ relations
(p; density increase), the efficiency of the grouperips approach against
classic index selection approach also increases.ddrét notice efficiency
increase for queries block with no relation (blogk). Furthermore, for this
block indexes developed from classical approachideatical to those with
grouped queries index selection method (see Tab. 1)

It is worth noting that the commercial advisory lgseem to be useful only
for non-related block querie®?! (p, = 0). For other queries block®{, Q3)
advisors are unable to recommend any indexes whadsgsee Tab. 2, Tab. 3).
As it seems, with block queries density increasedtiectiveness of such tools
decrease.
with no indexes

Tab. 1. Database queries Q! relations (p; =0) and

recommendations

Database queries set with no relations:

Q,: SELECT T1_2.KOL4, T1_1.KOL5
FROM TEST1 T1_1,

(SELECT KOL3, KOL4 FROM TEST1) T1_2
WHERE T1_1.KOL1 BETWEEN T1_1.KOL2 AND
T1 2.KOL4

AND T1_2.KOL3 = 1234

GROUP BY T1_2.KOL4, T1_1.KOLS5;

Q,: SELECT TEST2.KOL1, TEST2.KOL4
FROM TEST2 WHERE TEST2.KOL4 > 100

AND TEST2.KOL1 < 100 AND TEST2.KOL3 >ANY
(SELECT TEST2.KOL3 FROM TEST2 WHERE
TEST2.KOL2 < 100)

GROUP BY TEST2.KOL1, TEST2.KOL4 ORDER BY 2

Qs: SELECT KOL2, KOL4 FROM TEST3 WHERE
KOL4 < 1000

AND KOLL IN (0,5,10)

UNION ALL

SELECT KOL2, KOL5 FROM TEST3 WHERE KOL2 >
1000

AND KOLS5 IN (1,10,100);

Oracle SQL Advisor + TOAD suggestiosn:

CREATE INDEX k1_col3_col4_idx ON; (k, 3, k1 4);
CREATE INDEX k2_col1_col3_idx ON, (k. k; 3);
CREATE INDEX k2_col2_col3_idx ON, (k5. k; 5);
CREATE INDEX k3_col1_col2_col4_idx ON
T3(ks10 k32, k3 a);

CREATE INDEX k3_col2_col5_idx ON; (ks 5, k35);

Classic index selection approach:

CREATE INDEX k1_col3_idx ON (k; 3);
CREATE INDEX k2_col1_col2_col4_idx ON
Ty(kz1, ka2, kaa);

CREATE INDEX k2_col2_idx ONF,(k;);
CREATE INDEX k3_coll_col4_idx ON; (k3 4, k3 4);
CREATE INDEX k3_col5_idx ON;(ks5);

Grouped queries approach:

CREATE INDEX k1_col3_idx ON (k; 3);
CREATE INDEX k2_col1_col2_col4_idx ON
Tyl koo k),

CREATE INDEX k2_col2_idx ONF,(k,,);
CREATE INDEX k3_coll_col4_idx ON; (ks 4, k3 4);
CREATE INDEX k3_col5_idx ON;(k35);

14

Tab. 2. Database queries Q* for low relations (p, =57) and indexes

recommendations

Database queries set with low relations:

Q,: SELECT T3.KOL1,T3.KOL2

FROM TEST1 T1,

(SELECT T2.KOL3, T2.KOL5 FROM TEST2 T2, TEST1 T1
WHERE T2.KOL3=T1.KOL5) T2, TEST3 T3

WHERE T1.KOLS5 = T3.KOL4

AND T3.KOL1 =T2.KOL3

AND T3.KOL5 = ANY (SELECT T2.KOL5 FROM TEST2 T2,
TEST1 T1 WHERE T2.KOL4=T1.KOL3) ORDER BY 1,2;

Q,: SELECT DISTINCT T1.KOL, T1.KOL2 , COUNT(*)
FROM TEST1 T1, TEST3 T3,

(SELECT T2.KOL4, T2.KOL1 FROM TEST2 T2, TEST3 T3
WHERE T2.KOL3=T3.KOL5) T2

WHERE T1.KOL1 = T2.KOL1 AND T2.KOL4 = T3.KOL4
GROUP BY T1.KOL1, T1.KOL2 ORDER BY 1 DESC;

Q3: SELECT DISTINCT T1.KOL2, T2.KOL5, COUNT(2)
FROM TEST2 T2, TEST1 T1, TEST3 T3

WHERE T1.KOL4 = T3.KOL4 AND T1.KOL1 = T2.KOL3
AND T1.KOL5 > ANY (SELECT T2.KOL5 FROM TEST2 T2
WHERE T2.KOL1=1000) AND (T3.KOL3 > T2.KOL3)
GROUP BY T1.KOL2, T2.KOL5 ORDER BY 1,2 DESC;

Oracle SQL Advisor + TOAD suggestion:
NO INDEXES

Classic index selection approach:

CREATE INDEX k1_col1_col2_idx ON (ky 1, ki 2);
CREATE INDEX k1_col5_idx ONF} (ky 5);

CREATE INDEX k2_col1_col3_idx ON,(ky 1, k2 3);
CREATE INDEX k2_col3_col4_idx ON, (k3 3, k3 4);
CREATE INDEX k2_col4_idx ON,(ky,4);

CREATE INDEX k3_col1_idx ONs(ks.,);
CREATE INDEX k3_col3_idx ONT3 (k3);
CREATE INDEX k3_col4_idx ONT3(k3,4);

Grouped queries approach:
CREATE INDEX k1_col1_idx ONy (k; 1);

CREATE INDEX k2_coll1_col3_col4_idx ON
Ta(kz1, ka3, ko a);

CREATE INDEX k3_col2_col4_idx ON (ks 5, k3.4);

Tab. 3. Database queriesQ® with high
recommendations

relations (p3 = 0,91) and indexes

Database queries set with high relations:

Q,: SELECT COUNT(*) FROM TEST1

INNER JOIN TEST2 ON TEST1.KOL1 = TEST2.KOL2
AND TEST1.KOL2 = TEST2.KOL3 AND TEST1.KOL3 =
TEST2.KOL4 INNER JOIN TEST3 ON TEST2.KOL2 =
TEST3.KOL1 AND TEST2.KOL4 = TEST3.KOL3 AND
TEST2.KOL5 = TEST1.KOL3;

Q,: SELECT COUNT(*) FROM TEST1

INNER JOIN TEST2 ON TEST1.KOL1 = TEST2.KOL1
AND TEST1.KOL3 = TEST2.KOL3 AND TEST1.KOL2 =
TEST2.KOL4 AND TEST2.KOL2 = TEST1.KOL2
INNER JOIN TEST3 ON TEST2.KOL1 = TEST3.KOL1
AND TEST2.KOL2 = TEST3.KOL2 AND TEST2.KOL3 =
TEST3.KOL3 AND TEST2.KOL5 = TEST3.KOLS5;

Q3: SELECT COUNT(*) FROM TEST1

INNER JOIN TEST2 ON TEST1.KOL1 = TEST2.KOL5
AND TEST2.KOL3 = TEST1.KOL3 INNER JOIN TEST3
ON TEST2.KOL5 = TEST3.KOL1 AND TEST2.KOL1 =
TEST3.KOL5 AND TEST3.KOL3 = TEST2.KOL3

AND TEST1.KOL2 = TEST3.KOLS5;

NO INDEXES

Oracle SQL Advisor suggestion + TOAD suggestion:

Classic index selection approach:

CREATE INDEX k1_col1_col3_idx ON
Tl(kl,lv k1,3);
CREATE INDEX k1_col2_idx ONFy (k4 ,);

CREATE INDEX k2_col1_col2_idx ON
Tz(kz,p kz,z);

CREATE INDEX k2_col3_col5_idx ON
Tz(kz,sy kz,s);

CREATE INDEX k2_col4_idx ON,(ky,4);

CREATE INDEX k3_col1_idx ON3(k3.,);
CREATE INDEX k3_col3_idx ONIy (k3 5);
CREATE INDEX k3_col5_idx ON3(k3.5);

Grouped queries approach:

CREATE INDEX k1_coll_col2_col3_idx ON
Tl(kl,lv k1,2y k1,3)§

CREATE INDEX k3_coll_col3_col5_idx ON
T3(ksq, k33, k3s);

15

Ql

-

’

]
]
! d
A
]
Nl
\k,/
o3

Legend:

vertex representing columin ;

columnsik; ; k; , belonging to tabl&,

- columnsk;; k., , connected by quergy;

Fig. 5. Hypergraph for example set of querie®* with no relations: p; = 0

16

--- - columnsk;; k;, belonging to tabl&,
- columnsk;; k., , connected by quergy;

Fig. 6. Hypergraph for set of queriesQ? with low relations: p, = 0,57

17

18

Legen
vertex representing coluni ;

- columnsk;; k;, belonging to tabl&,

Ta

:

@ @ - columnsk;; k., , connected by quergy

Fig. 7. Hypergraph for set of queriesQ® with concentrated relations: p; = 0,91

6. CONCLUSIONS

Finding a good index or indexes set for a tableeis/ important for every
relational database processing not only from thiéopmance point but also cost
aspect. Indexes can be crucial for a relationadlztese to process queries with
reasonable efficiency, but the selection of the ekexes is very difficult.

Presented examples show that there is a neednftindf an automatic index
selection mechanism with grouped queries-oriengtioler than a classic (single
query) approach for blocks with related queriesackte shows that index focus
on grouped queries gives better results and enabkysto save time needed for
index creation. It also saves system hardware ressuln the examples we
show grouped queries indexes set are more effethian individual queries
indexes because queri@$, Q3 satisfy the relation condition (see Tab. 2,3). For
blocks with no related queries we show groupedigséndexes set are not more
effective than individual queries indexes becauserigsQ! do not satisfy the
relation condition (see Tab. 1).

One should note that the experiments we carry mutcadetermine index sets
that minimize queries blocks execution time onlyhat/is important in the
general case are different parameters such asx ici@ation cost, number of
indexes and disk storage allocation. Future rebeailt take into account the
resources needed to create an index and storameces.

For the automatic index selection, the system naotisly monitors queries
block and gathers information on columns used ierigs. The administrator (or
user) can summon the automatic system at any tnimetpresented with the
current index recommendation, or tune it to theriggeblock needs. The system
also presents the user index set and allows usehdose best option. User
decides whether to reject or accept proposed s64.t® index interactions, the
user's decisions might affect other indexes in twmfiguration, so the
recommendation would need to be regenerated, takangser's constraints into
account.

In the presented examples we show three situatibdatabase queries block
execution, one without indexes, one with classjzasste queries indexing and
one with grouped queries indexing. Examples shothedl one should create
grouped indexes only for related queries. In trattext presented relationship
may be treated as sufficient condition for the eatbn of grouped queries
indexing.

Our current works are focused on grouped queridexirselection method
with the use of genetic algorithm [2] that analyziedabase queries, suggests
indexes’ structure and tracks indexes influencahenqueries’ execution time.
We work on the system that will be used in an agttetm find better indexes for
a critical part of long-running database queriestesting and production

19

database environment. Recording queries with gnddxes together with their

total execution time is a starting point for broagdearches in the future. Simple
test presented in this article proves effectiverdgbis method. The developed
system is scalable: there is a potentiality of ciminiy smaller queries’ blocks

into larger series and finding better solution lblase execution history.

(1]

(2]
(3]

[4]
(5]
(6]

[7]
(8]
[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

20

REFERENCES

AGRAWAL S., CHAUDHURI S., KOLLAR L., MARATHE A., NARASAYYA V., and
SYAMALA M.. Database Tuning Advisor for MicrosoftC8 Server 2005. In Proceedings
of the 30th International Conference on Very Ldbggabases, 2004.

BACK T., “Evolutionary algorithms in theory and prmet evolution strategies,
evolutionary programming, genetic algorithms”, QxfdJniversity Press Oxford, UK, 1996.
BRUNO N., CHAUDHURI S., “Automatic physical databaseing: a relaxation-based
approach”, SIGMOD '05 Proceedings of the 2005 ACI&I80D international conference
on Management of data, ACM New York, NY, USA, 200p,227-238.

CHAUDHURI S., NARASAYYA V., “An efficient Cost-Drivenindex Selection Tool for
MS SQL Server”, Very Large Data Bases Endowment188y7.

COMERS D., "The Ubiquitous B-Tree", Computing Surveysl 1(2),
doi:10.1145/356770.356776, pp. 123-137.

DAGEVILLE B., DAS D., DIAS K., YAGOUB K., ZAIT M., ad ZIAUDDIN M..
“Automatic SQL Tuning in Oracle 10g”. In Proceedingf the 30th International
Conference on Very Large Databases, 2004.

DAWES C., BRYLA B., JOHNSON J., WEISHAN M., “OCA Oraclidg Administration
1", Sybex, 2005, pp.173.

FINKELSTEIN S., SCHKOLNICK M., TIBERIO P., “Physical thbase design for
relational databases”, ACM Trans. Database Sys1)1@(988), pp.91-128.

FRANK M., OMIECINSKI M., “Adaptive and Automated IngeSelection in RDBMS”,
Proceedings of EDBT, 1992.

GUPTA H., HARINARAYAN V., RAJARAMAN A., and ULLMAN J. D., "Index
Selection for OLAP”, In Proceedings of the Intemiaal Conference on Data Engineering,
Birmingham, U.K., April 1997, p. 208-219.

KNUTH D., “The Art of Computer Programming”, vol. 3orting and Searching. Addison-
Wesley, Reading, Mass., 1973.

KNUTH D., “Sorting and Searching, The Art of Computerogramming”, Volume 3
(Second ed.), Addison-Wesley.

KOLACZKOWSKI P., RYBINSKI H., “Automatic Index Selection in RDBMS by
Exploring Query Execution Plan Space”, Studies iimm@otational Intelligence, vol. 223,
Springer, 2009, pp.3-24

KRATICA J., LJUBIC I, TOSIC D., “A Genetic Algorithnfor the Index Selection
Problem”, EvoWorkshops'03 Proceedings of the 20@8rmational conference on
Applications of evolutionary computing, 2003.

LEHMAN P.L., “Efficient locking for concurrent opations on B-trees”, ACM Transactions
on Database Systems (TODS), Volume 6 Issue 4, 384, pp.650-670.

MAGGIE Y., IP L., SAXTON L. V., and VIJAY RAGHAVAN V, "On the Selection of an
Optimal Set of Indexes”, IEEE Transactions on SafsvEngineering, 9(2), March 1983,
p.135-143.

SCHKOLNICK M., “The Optimal Selection of Indices f&iles”, Information Systems, V.1,
1975.

[18] SCHNAITTER K., “On-line Index Selection for Physidaatabase Tuning”, ProQuest, UMI
Dissertation Publishing, 2011.

[19] TATHAM S., *“Counted B-Trees”, http://www.chiark.gmeend.org.uk/~sgtatham/
algorithms/cbtree.html.

[20] WEDEKIND H., “On the selection of access paths inlaa base system. In Data Base
Management”, KLIMBIE J.W. and KOFFEMAN K.L., Eds. Nb-Holland, Amsterdam,
1974, pp. 385-397.

21

